
International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1638
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Eliminating GPS Uncertainty
Rushill Shah1

Abstract— This research has been conducted to create a filtration algorithm in order to remove outliers from a given set of GPS data by
creating parameters and using mathematical and logistic regression. To a small extent, trial and error too has been used, in order to ensure
that the system is functional for all GPS points in the JSON format. Other methods discussed in this Python (3.6)-based research report
involve usage of Google’s ‘SnapToRoads’ API and curve smoothing in order to better eliminate outliers.

Index Terms— API, GPS, GPS outliers, Outliers, Python, Regression, Smoothing, Standard Deviation, Uncertainty

—————————— ——————————

1 INTRODUCTION

1 Rushill Shah is an 11th grade student at the Dhirubhai Ambani School in
Mumbai

During a two-week internship with a tech start-up that pro-
vides driving behavior analytics and fleet management
through software to businesses, working on GPS based sys-
tems used as part of the software, this research was con-
ducted.
A part of research was looking into the uncertainty of GPS
data provided by the phone, a primary source of location data
for the company. GPS points often showed the location of the
signal source to be miles away from the actual position.
In an attempt to eliminate such uncertainty and make the
software more reliable, the algorithm created in this project
uses mathematical and logical means to refine GPS data. This
serves to augment pre-existing systems for elimination of out-
liers by adding a three-tier filtration system. The project builds
upon and uses pre-existing systems as well as creates its own
that are in accordance to the many unique factors of the soft-
ware such as frequency of input, sending data and location
which will be further discussed.

2 AIM
To build a basic filtering algorithm based on probability and
logistic regression to detect and remove outliers from a given
set of GPS points.

3 BACKGROUND

3.1 Background Information

• Data Set: Although this program will work for every set
of GPS points in a tuple format, the sample data that will
be used is as in Appendix Section 1.

• Iterations: Using python ‘for loops’ this program involves
the use of an iterative algorithm for practical use. All the
code can be found in Appendix Section 2.

• Data Format: The data received by the software is stored
in the JSONi format. JSONii (JavaScript Object Notation) is
a lightweight data-interchange format. It is easy for hu-
man interpretation. It is easy for machines to parse and
generate. It’s universal and the de facto data format of the

Web 2.0. In this case, it is presented in an array data type.
Additionally, the data in this research is extracted from a
tuple.

• Distance (Haversine formula): This formula is used to
calculate the distance between two points.

A = sin({difference between lat}/2)**2+cos(lat1)*cos(lat2)*sin({
difference between lon}/ 2)**2

C = 2 * atan2 (sqrt(a), sqrt(1 - a))

Distance = R * C * 1000 [R = radius of earth = 6373] (1)

• Time: Time is in the epoch time format or ‘’timestamp’’,
which shows the current time as the number of millise-
conds from January 1, 1970. For instance, 6:30 pm on July
2, 2017 would be 1498977000 seconds in the timestamp
format.

• Snap To Roads API: The Google Snap To Roads API
works by interpolating fed in values with data in its regi-
stry, ‘snapping’ or corresponding them. It plots the input
to a road and eliminates the outlier points.

3.2 Initial Calculations
At the beginning, the JSON file must be imported from the
root directory and queried. Only after this can the data in the
file by used.

Using aforementioned Haversine formula, after importing the
required functions or using NumPy, the distance between the
two points is calculated between a pair of GPS points, for all
the given data points in the array.

Additionally, the program extracts the time in seconds from
the given ‘timestamp’, in order to use for the velocity calcula-
tions. The following code can be used:

SecondsTime = (EpochTime1 - EpochTime2)/1000 (2)
SetTime.append(SecondsTime)

Velocity is calculated by using the formula v = d/t and iterat-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1639
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

ing the process for each coordinate in the array.

For a greater range of data to work with, the program also
calculates the average distance and velocity.

AverageVelocity = TotalDistance/ TotalTime
 (3)
AverageDistance = TotalDistance/Recordings

4 ELIMINATION PROCESS
The method used in this project is threefold-

• Standard deviation

• Curve Smoothing

• API

4.1 Standard Deviation
Standard Deviation of a set of data is a measure of how widely
spread the data points in a set of data are. It is used to deter-
mine whether values are in or out of range, or in essence, the
deviation of a data point from the mean.
Using the ‘std’ function in NumPy, the standard deviation is
calculated for velocity and distance. As according to the norm,
the deviation from average is calculated for each element of
the array. If the element is at a greater deviation than the stan-
dard deviation, it is appended to an outlier set.

Sample Code for Standard Deviation

Std= sqrt (AvDist*(abs(distance -(distance*AvDist))**2))
 (4)
stdVel = sqrt(AvVel*(abs(Vel-(Vel*AvVel))**2))

Since the distance and velocity tend to vary largely in a trip in
India due to traffic, traffic lights, possible accidents, slopes,
speed bumps and so on, the standard deviation is not a very
reliable way to eliminate outliers in this context unless accom-
panied by support systems.
The values that have a greater deviation from the mean than
the standard deviation are appended to an Outlier array,
while the indices of the rest are appended to the ‘In’ array.
These indices will be used towards the end of the program to
acquire the final outliers

Sample code for indices

SetTrue = [] (5)
ValSet = [1343, 555, 3342]
if True:
 SetTrue.append(Valset.index)

In this block of code SetTrue is a set of values that are not out-
liers

The output on running the code is given in Appendix Section

3.

4.2 Curve Smoothing
Curve smoothing, or Data Smoothing is a method used to re-
move uncertain or outlying data points involving the use of an
algorithm to remove noise from a data set, allowing important
patterns to stand out.  
The algorithm consists of the creation of an approximate func-
tion by removal of any data points that extend far too beyond
the derivative or trend. It involves the use of trial and error as
well as prior results from the software.
Another method that can be used is based on the derivative, in

a man-
ner

similar
to the

differ-
ence method used above. Parameters for what magnitude of
difference between derivatives gives an outlier too can be set
using precedents and trial and

error, which have not been conducted in this project since it
was a secondary method.

Curve Smoothing has been done on velocity values solely for
the reason that latitude and longitude values cannot be
smoothed without losing actual data from the set.

Moreover, smoothing cannot be done for the first two and
last three terms of a set, due to the absence of adjacent data
points Moreover, smoothing cannot be done for the first two
and last three terms of a set, due to the absence of adjacent
data points. These have been assumed to be true and added to
the set nonetheless. Here too an index set has been created that
stores the indices of the valid elements of the data set.

Sample Code for Curve Smoothing:

SetVel, OutVel are predefined sets of velocity and velocity

outliers between 2 points

OutSmooth = []

Fig.1. The portion webage of the SnapToRoads API
once the request has been sent. IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1640
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

(6)
IndexOut = []
IndSmooth = []
length = len(SetVel)
for i in range(2, length-3):
 diffnext = abs(SetVel[i+2])- (SetVel[i+1])
 diffprev = abs(SetVel[i-1])-(SetVel[i-2])
 diff1 = abs(SetVel[i]-SetVel[i-1])
 diff2 = abs(SetVel[i+1]-SetVel[i])
 if diff1 > 1.5*diffprev or diff2 > 1.5*diffnext:
 IndSmooth.append(SetVel.index(SetVel[i]))
 else:
 OutSmooth.append(SetVel.index(SetVel[i]))

for i in range (0, 2):
 IndSmooth.append(i)
for i in range (24, length):
 IndSmooth.append(i)

While the sample code accomplishes its purpose and it ex-

planatory, a more efficient block is used in the actual code in
Appendix Section 1 .The output for the code can be found in
appendix Section 4.

4.3 SnapToRoads API
The Google SnapToRoads API applies a set of data to

Google’s existing registry and matches it to a road. The API
interpolates data into the roads it possesses in its registry and
returns back the points that are closest to its data points.

From Python, this program makes an HTTP request and

sends data to the API, and on receipt adds the outliers indi-
cated by the API to a separate array. An HTTP request can be
made in python by using the request.() command.

Sample Code for SnapToRoads request:

results = requests.get("API Key”) (7)
snappoints = results.json()['snappedPoints']
myset = set()
for point in snappoints:
 snapdata.add((point['location']['latitude'],
 point['location']['longitude']))
print(snapdata)

The code here extracts the original index from the webpage.
This index is the index of the data point, which was sent with
the request, and has been confirmed by the API to be valid.
The ‘originalIndex’ data is requested and then added to a dif-
ferent array.

This is the third array of indices that will be used to get the

final result through intersection.

As visible in the Figure, the originalIndex gives us the in-

dices of the accepted values in the data set sent with the re-
quest, after having snapped it. The ‘latitude’ and ‘longitude’

values show us to what data point has the request been
snapped to.

5 FINAL OUTLIERS
 Final Outliers:

Now that the program has arrays of outliers using three dif-

ferent methods, we can use it to filter out unreliable values.
The program finally makes a set of outliers that is an intersec-
tion of all four sets (standard deviation of distance and veloci-
ty, Smoothing and SnapToRoads), thus excluding values most
likely to be outliers and accounting for uncertainty in all three
methods.

However, the final output given by the set of code does not

provide the values in the format of the input, but provides it in
the form of a sub-array tuple, which can be easily converted to
other formats.

Sample code for the intersection:

Set1 = [1, 2, 3] (8)
Set2 = [4, 5, 6]
SetIntersect = list(set(Set1) & set(Set2))
Print (SetIntersect)
OUT: [1, 2, 3, 4, 5, 6]

The final set of outliers can be found in Section 5 of the

Appendix

6 CONCLUSION
Through this research, a lot was learned about iterations, py-
thon features, and regression. A number of mathematical me-
thods used also served to teach me about uncertainty elimina-
tion in all measurements. Above all, this research taught me
about APIs, making http requests, and methods such as curve
smoothing and standard deviation, skills I view as important
with regards to my future career.

Thus with the use of mathematical and logical regression, API,
and general trial and error a reliable filtration system has been
created for the exclusion of unreliable values.

7 ACKNOWLEDGMENTS

I would like to thank Mr. Shivalik Sen, CEO of Vahanalytics
for allowing me to work as an intern and conduct research
with the company, and guiding me through the challenging
steps of this research.

8 APPENDIX

8.1 Section 1
[

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1641
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

{
"timestamp": 1499159501922,
"coordinates": [
12.919082641601562,
77.65169525146484
]
},
{
"timestamp": 1499159503930,
"coordinates": [
12.918915748596191,
77.6517105102539
]
},
{
"timestamp": 1499159506936,
"coordinates": [
12.918656349182129,
77.65177154541016
]
},
{
"timestamp": 1499159509002,
"coordinates": [
12.918524742126465,
77.6517562866211
]
},
{
"timestamp": 1499159511984,
"coordinates": [
12.918295860290527,
77.65178680419922
]
},
{
"timestamp": 1499159513206,
"coordinates": [
12.918216705322266,
77.65177154541016
]
},
{
"timestamp": 1499159515914,
"coordinates": [
12.918027877807617,
77.65178680419922
]
},
{
"timestamp": 1499159517944,
"coordinates": [
12.917914390563965,
77.65178680419922
]
},
{

"timestamp": 1499159520903,
"coordinates": [
12.917774200439453,
77.65178680419922
]
},
{
"timestamp": 1499159522917,
"coordinates": [
12.917659759521484,
77.65179443359375
]
},
{
"timestamp": 1499159524954,
"coordinates": [
12.917553901672363,
77.65180969238281
]
},
{
"timestamp": 1499159526928,
"coordinates": [
12.917448043823242,
77.6518325805664
]
},
{
"timestamp": 1499159529917,
"coordinates": [
12.917227745056152,
77.65177917480469
]
},
{
"timestamp": 1499159532923,
"coordinates": [
12.91706657409668,
77.65178680419922
]
},
{
"timestamp": 1499159534932,
"coordinates": [
12.916943550109863,
77.65178680419922
]
},
{
"timestamp": 1499159537974,
"coordinates": [
12.916749000549316,
77.65178680419922
]
},
{
"timestamp": 1499159539937,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1642
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

"coordinates": [
12.916621208190918,
77.65179443359375
]
},
{
"timestamp": 1499159541962,
"coordinates": [
12.91647720336914,
77.65180206298828
]
},
{
"timestamp": 1499159542240,
"coordinates": [
12.91647720336914,
77.65180206298828
]
},
{
"timestamp": 1499159544921,
"coordinates": [
12.916269302368164,
77.65177154541016
]
},
{
"timestamp": 1499159546928,
"coordinates": [
12.916149139404297,
77.65178680419922
]
},
{
"timestamp": 1499159548959,
"coordinates": [
12.916014671325684,
77.65177917480469
]
}
]

8.2 Section 2

import requests

import json

with open('strings.json') as data_file:
 data = json.load(data_file)

from math import sin, cos, sqrt, atan2, radians

R = 6373.0 # approximate radius of earth in km

SetDist = []
api = []
SetDat =[]
SetTime=[]
SetVel = []
length = len(data)
for i in range(0, length-1):
 dataPoint = data[i]
 dataPoint1 = data [i+1]
 coordinate = dataPoint['coordinates']
 coordinate1 = dataPoint1['coordinates']
 SetDat.append(coordinate)
 x = coordinate[0]
 y = coordinate[1]
 x1 = coordinate1[0]
 y1 = coordinate1[1]
 import math
 lat1 = math.cos(math.radians(x)) #converts degrees of long
or latitude into rads
 lon1 = math.cos(math.radians(y))
 lat2 = math.cos(math.radians(x1))
 lon2 = math.cos(math.radians(y1))
 dlon = lon2 - lon1
 dlat = lat2 - lat1
 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 #
formula for distance
 c = 2 * atan2(sqrt(a), sqrt(1 - a))
 distance = R * c * 1000
 Time = dataPoint['timestamp']
 Time = dataPoint['timestamp']
 TimePoint = dataPoint['timestamp']
 TimePoint1 = dataPoint1["timestamp"]
 SecTime = (TimePoint1 - TimePoint)/1000
 SetTime.append(SecTime)
 print("The time between the 2 points is-", SecTime, "s")
 SetDist.append(distance)

 print("distance between the 2 points:", distance, "m")
 AvDist = sum(SetDist)/len(SetDist)
 Velocity = SetDist[i]/SetTime[i]
 Velocity = Velocity*(18/5)
 SetVel.append(Velocity)
 AvVel = sum(SetVel)/len(SetVel)

 print ('Speed of the car is', Velocity, "m/s")
 print ('Speed of the car is', Velocity, "km/hr")
print ('The array of raw GPS coordinates is:-', SetDat)
api1 = []
for i in range(0, length-1):
 dataPoint = data[i]
 dataPoint1 = data [i+1]
 coordinate = dataPoint['coordinates']
 coordinate1 = dataPoint1['coordinates']
 x = coordinate[0]
 y = coordinate[1]
 x1 = coordinate1[0]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1643
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 y1 = coordinate1[1]

 str1 = str(x)
 str2 = str(y)
 str3 = '|'
 apiData = str1 + ',' + str2 + str3

 api1.append(apiData)
 i +=1
print (' The data points to be sent for a SnapToRoads request i
n correct format:', api1)
requestdat =
‘https://roads.googleapis.com/v1/snapToRoads?path=’ +
apiData + ‘&key=AIzaSyAmplaUG26XJGwPrLbky2bHQ-
eBmQvZUVU’
print("The Average Distance between 2 points is:", AvDist, "m
etres" + '\n')

print(" The average velocity during the trip is", AvVel, "km/hr
")
std= sqrt(AvDist*(abs(distance - (distance*AvDist))**2))
stdVel = sqrt(AvVel*(abs(Velocity - (Velocity*AvVel))**2))
print ('The standard deviation in distance is:', std, '\n')
print ('The standard deviation in velocity is:', stdVel, '\n')

ValRange = []
Outliers = []
lenn = len(SetDist)
IndDist = []
lenn = len(SetDist)

#STANDARD DEVIATION

for r in range (0, lenn-1):
 dev = SetDist[r]-AvDist
 if abs(dev) <= std:
 IndDist.append(SetDist.index(SetDist[r]))
 else:
 Outliers.append(SetDist[r])
print ("The set of values in range for distance =", ValRange)
print ("The outliers are=", Outliers)
print('The valid indices of distance data as processed by stand
ard deviation are:', IndDist)

VelRange = []
OutVel = []
length = len(SetVel)
IndVel = []
for r in range (0, length-1):
 dev = SetVel[r]-AvVel
 if abs(dev) <= stdVel:
 IndVel.append(SetVel.index(SetVel[r]))
 else:
 pass

print ('Standard Deviation in Speed is ', dev)
print('The valid indices in the velocity data as processed are:', I

ndVel)

#CURVE SMOOTHING

SetVel = [math.sin(math.pi*(n % 10 - 5)/5) for n in range(20)]

diffs = [[e1 - e0, e2 - e1, e3 - e2, e4 - e3]
 for e0, e1, e2, e3, e4
 in zip(SetVel,
 SetVel[1:],
 SetVel[2:],
 SetVel[3:],
 SetVel[4:])]

OutSmooth = []
IndSmooth = []
delta = 1.5

for i, d in enumerate(diffs):
 if d[1] < delta*d[0] or d[2] < delta*d[3]:
 IndSmooth.append(i+2)
 else:
 OutSmooth.append(SetVel[i+2])

for i in range (0, 2):
 IndSmooth.append(i)
for i in range (24, length):
 IndSmooth.append(i)

print ('The Indices of the values in Range after Curve Smoothi
ng are:', IndSmooth)
print("The values of Velocity that do not satisfy the conditions
are:", OutSmooth)

#HTTP REQUEST
results = requests.get(requestdat)
snappoints = results.json()['snappedPoints']
snapdata = []
for point in snappoints:
 # this is each individual element in snappedPoints array
 snapdata.append(point['originalIndex'])
print ('The indices of data that is valid as requested from the S
napToRoads API is:', snapdata)

#RESULT

InFinal = []
InFin-
al = list(set(snapdata) & set(IndSmooth) & set(IndDist) & set(I
ndVel))
print('The final set of indices for the data points that are not ou
tliers is:', InFinal)

length = len(InFinal)
FinalData = []
for i in InFinal:
 FinalData.append(SetDat[i])

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1644
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

print ('The result of the program, on eliminating all outliers is:
', FinalData)

7.3 Section 3
[{'timestamp': 1499159501922, 'coordinates': [12.9190826416015
62, 77.65169525146484]}, {'timestamp': 1499159503930, 'coordin
ates': [12.918915748596191, 77.6517105102539]}, {'timestamp': 1
499159506936, 'coordinates': [12.918656349182129, 77.65177154
541016]}, {'timestamp': 1499159509002, 'coordinates': [12.918524
742126465, 77.6517562866211]}, {'timestamp': 1499159511984, 'c
oordi-
nates': [12.918295860290527, 77.65178680419922]}, {'timestamp':
 1499159513206, 'coordinates': [12.918216705322266, 77.6517715
4541016]}, {'timestamp': 1499159515914, 'coordinates': [12.91802
7877807617, 77.65178680419922]}, {'timestamp': 1499159517944,
 'coordinates': [12.917914390563965, 77.65178680419922]}, {'tim
es-
tamp': 1499159520903, 'coordinates': [12.917774200439453, 77.6
5178680419922]}, {'timestamp': 1499159522917, 'coordinates': [1
2.917659759521484, 77.65179443359375]}, {'timestamp': 1499159
524954, 'coordinates': [12.917553901672363, 77.65180969238281]
}, {'timestamp': 1499159526928, 'coordinates': [12.917448043823
242, 77.6518325805664]}]

7.4 Section 4
Section 4.1 :Indices of values in range

The Indices of the values in Range after Curve Smoothing are:
[2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 0, 1, 24, 25, 26]

Section 4.2: Data points in range

[{'time-
stamp': 1499159501922, 'coordinates': [12.919082641601562, 77.
65169525146484]}, {'timestamp': 1499159503930, 'coordinates': [
12.918915748596191, 77.6517105102539]}, {'timestamp': 1499159
506936, 'coordinates': [12.918656349182129, 77.65177154541016]
}, {'timestamp': 1499159509002, 'coordinates': [12.918524742126
465, 77.6517562866211]}, {'timestamp': 1499159511984, 'coordin
ates': [12.918295860290527, 77.65178680419922]}, {'timestamp':
1499159513206, 'coordinates': [12.918216705322266, 77.6517715
4541016]}, {'timestamp': 1499159515914, 'coordinates': [12.91802
7877807617, 77.65178680419922]}, {'timestamp': 1499159517944,
 'coordi-
nates': [12.917914390563965, 77.65178680419922]}, {'timestamp':
 1499159520903, 'coordinates': [12.917774200439453, 77.6517868
0419922]}, {'timestamp': 1499159522917, 'coordinates': [12.91765
9759521484, 77.65179443359375]}]

7.5 Section 5
Section 5.1: Indices of data points snapped by API

The indices of data that is valid as requested from the SnapTo
Roads API is: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1
7, 18, 19, 20, 21, 22, 23, 24, 25, 26]

Section 5.2: Data points snapped

{(12.911924499999998, 77.649052), (12.91247152863899, 77.6486
3494367839), (12.915622446484862, 77.65178829923374), (12.915
12944333664, 77.65181069088683), (12.912473433376999, 77.648
83380796768), (12.915808049228117, 77.65177986934125), (12.91
2650843379408, 77.65188984884699), (12.913309683275038, 77.6
5187592806588), (12.912472259151805, 77.64871121105774), (12.
915683362257036, 77.65178553250118), (12.915475867907952, 77
.65179495667844), (12.911938955387066, 77.64983043148027), (1
2.911924574576156, 77.64906257055475), (12.913995558775671,
77.65186064430418), (12.911930136083416, 77.6495503015075), (
12.915263648397163, 77.65180459545144), (12.912360523136746,
 77.64899217857234), (12.912149064679113, 77.65189661764867),
 (12.911992536413095, 77.65165489457297), (12.91246926412537
7, 77.64839860755507), (12.918214811587053, 77.6517145408987
4), (12.91802528954814, 77.65172119976897), (12.9179119879358
93, 77.65172590496891), (12.917772027120648, 77.651731717268
82)}

7.6 Section 6
[[12.919082641601562, 77.65169525146484], [12.91891574859619
1, 77.6517105102539], [12.918656349182129, 77.65177154541016]
, [12.918524742126465, 77.6517562866211], [12.918295860290527
, 77.65178680419922], [12.918027877807617, 77.65178680419922]
, [12.917914390563965, 77.65178680419922], [12.91777420043945
3, 77.65178680419922], [12.917659759521484, 77.6517944335937
5], [12.917553901672363, 77.65180969238281], [12.917448043823
242, 77.6518325805664], [12.917227745056152, 77.651779174804
69], [12.91706657409668, 77.65178680419922], [12.916943550109
863, 77.65178680419922], [12.916621208190918, 77.65179443359
375], [12.91647720336914, 77.65180206298828], [12.91577529907
2266, 77.65180969238281], [12.915729522705078, 77.6517944335
9375]]

8 REFERENCES

• "Introducing JSON." JSON. Accessed July 27, 2017.

http://www.json.org/.

• "Introducing JSON." JSON. Accessed July 27, 2017.

http://www.json.org/.

• "Haversine Formula in Python (Bearing and Distance be-

tween two GPS points)." Haversine Formula in Python
(Bearing and Distance between two GPS points) - Stack
Overflow. Accessed July 27, 2017.
https://stackoverflow.com/questions/4913349/haversin
e-formula-in-python-bearing-and-distance-between-two-
gps-points.

• Google. Accessed July 27, 2017.

https://developers.google.com/maps/documentation/ro
ads/snap.

• "Epoch & Unix Timestamp Conversion Tools." Epoch

Converter. Accessed July 27, 2017.
https://www.epochconverter.com/.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1645
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

• Standard Deviation and Variance. Accessed July 27, 2017.
http://www.mathsisfun.com/data/standard-
deviation.html.

• "Numpy.std¶." Numpy.std — NumPy v1.13 Manual. Ac-

cessed July 27, 2017.
https://docs.scipy.org/doc/numpy/reference/generated
/numpy.std.html.

• "Fit." Smooth response data - MATLAB smooth - Math-

Works India. Accessed July 27, 2017.
https://in.mathworks.com/help/curvefit/smooth.html.

• "Requests: HTTP for Humans¶." Requests: HTTP for Hu-

mans — Requests 2.18.2 documentation. Accessed July 27,
2017. http://docs.python-requests.org/.

i

IJSER

http://www.ijser.org/
http://docs.python-requests.org/

	1 Introduction
	2 Aim
	3 Background
	3.1 Background Information
	3.2 Initial Calculations

	4 Elimination Process
	4.1 Standard Deviation
	Sample Code for Standard Deviation
	Sample code for indices

	4.2 Curve Smoothing
	4.3 SnapToRoads API

	5 Final Outliers
	6 Conclusion
	7 Acknowledgments
	8 Appendix
	8.1 Section 1
	8.2 Section 2
	7.3 Section 3
	7.4 Section 4
	7.5 Section 5
	7.6 Section 6

	8 References

